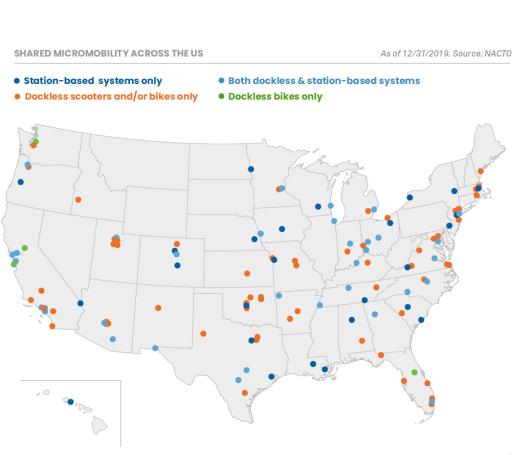
REGIONAL EMISSION AND HEALTH IMPACT ASSESSMENT OF IMPLEMENTATION OF MICROMOBILITY: AN EL PASO, TX CASE STUDY

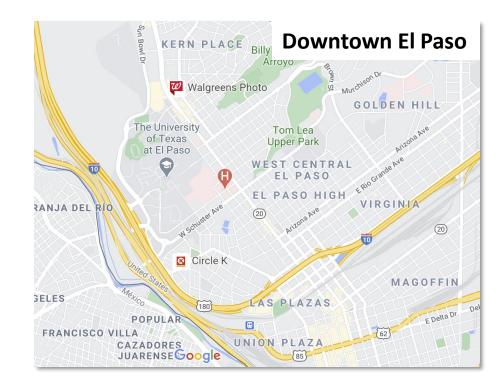
Presenter: Farinoush Sharifi


Center for Advancing Research In Transportation Emissions, Energy, and Health (CARTEEH) Texas A&M Transportation Institute

Background

- Recent policies in place to promote micromobility:
 - dedicated lanes and parkings
 - partnership with shared service providers
- 136 million shared micromobility trips in 2019 (60% increase)
- Need for comprehensive assessment of potential benefits to urban sustainability

Research Goals


- Incorporate micromobility demand at different adoption rates into the existing transportation network
- Investigate the environmental and societal role of micromobility at regional and boundary levels

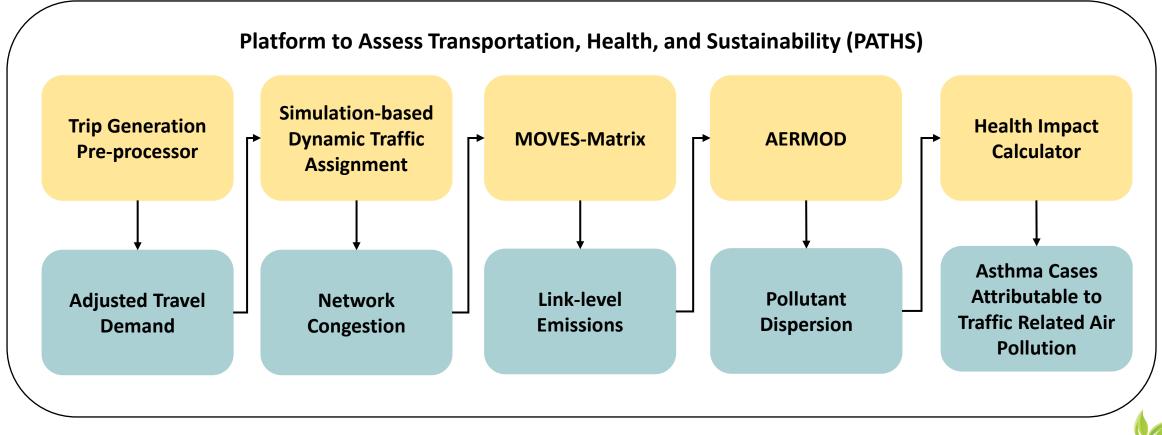
El Paso Case Study

- Located on the Texas border region with several ports of entry
- A non-attainment area for particulate matter (PM₁₀)

CARTEEH

Current Shared-Micromobility in El Paso

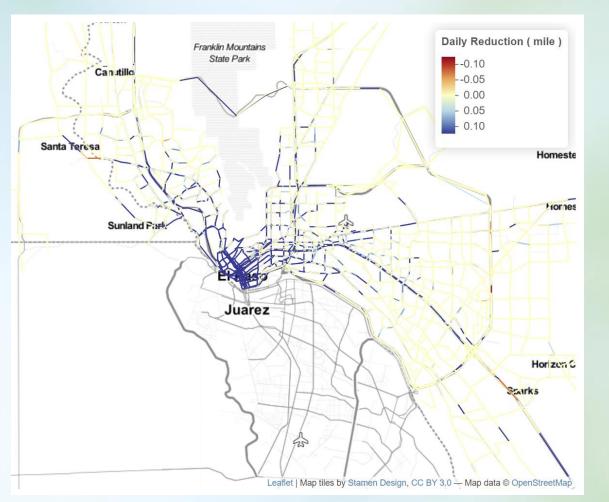
- SunCycle bikesharing managed by Camino Real Regional Mobility Authority (CRRMA)
 - 3% increase in ridership in 2019
 - 15,673 rides in 2019
 - Estimated 35 tons carbon offset in 2019
 - \$74,616 ridership revenue
- Glide scooters
 - Officially started in 2019


Micromobility Scenarios Setup

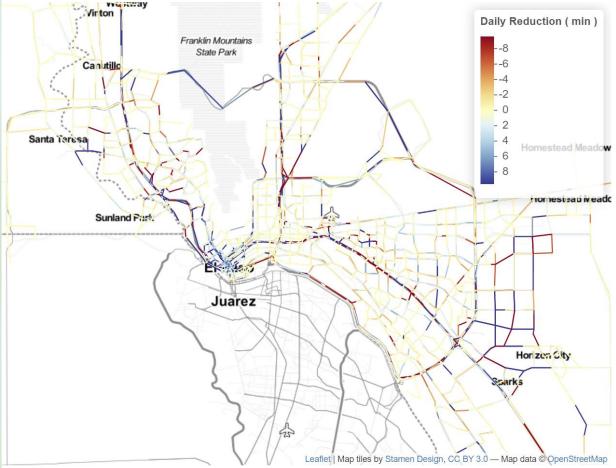
- Eligible micormobility trips:
 - Car trips
 - Originated/terminated in Downtown and UTEP areas
- Adoption formulation:
 - Distance of a trip taken via a micromobility mode
 - Probability of a very short car trip being replaced by a micromobility trip
- For each eligible trip i, the probability of being replaced is: $P_r^i = P_{max} e^{-L^i/L}$

Scenario	L	P _{max}	Daily Micromobility Trips	Daily Vehicle Trips
Low Adoption	1	0.2	1,743	2,491,492
Medium Adoption	1.25	0.25	2,772	2,490,463
High Adoption	1.5	0.3	3,845	2,489,390

Regional Traffic Operation and Emission Impacts

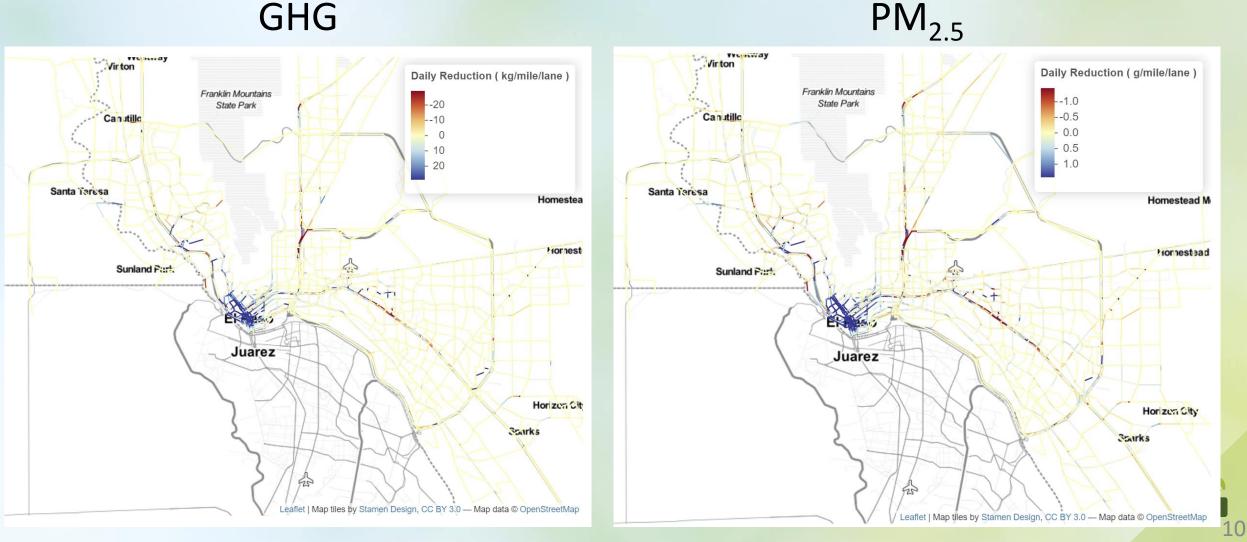

Scenario	Metric	Total Reduction	Percent Change	p-value
Micro-mobility: Low Adoption	PM10 (kg/day)	0.38	0.06	0.64
	PM2.5 (kg/day)	0.34	0.06	0.64
	NOx (kg/day)	8.77	0.05	0.60
	Energy Consumption (MMBTU)	322,809	0.25	0.45
	CO2e (kg/day)	24,501	0.25	0.45
	Total Delay (min/day)	-13,886	-0.12	0.85
	VMT	2,195	0.01	0.53
Micro-mobility: Medium Adoption	PM10 (kg/day)	0.27	0.04	0.65
	PM2.5 (kg/day)	0.25	0.04	0.65
	NOx (kg/day)	5.50	0.03	0.61
	Energy Consumption (MMBTU)	38,415	0.03	0.73
	CO2e (kg/day)	2,942	0.03	0.72
	Total Delay (min/day)	2,497	0.02	0.97
	VMT	3,940	0.02	0.28
Micro-mobility: High Adoption	PM10 (kg/day)	0.82	0.12	0.31
	PM2.5 (kg/day)	0.74	0.12	0.31
	NOx (kg/day)	18.75	0.11	0.26
	Energy Consumption (MMBTU)	496,714	0.39	0.33
	CO2e (kg/day)	37,732	0.38	0.33
	Total Delay (min/day)	16,879	0.15	0.81
	VMT	6,393	0.03	0.11

No statistically significant improvement in regional level, likely due to small implementation area



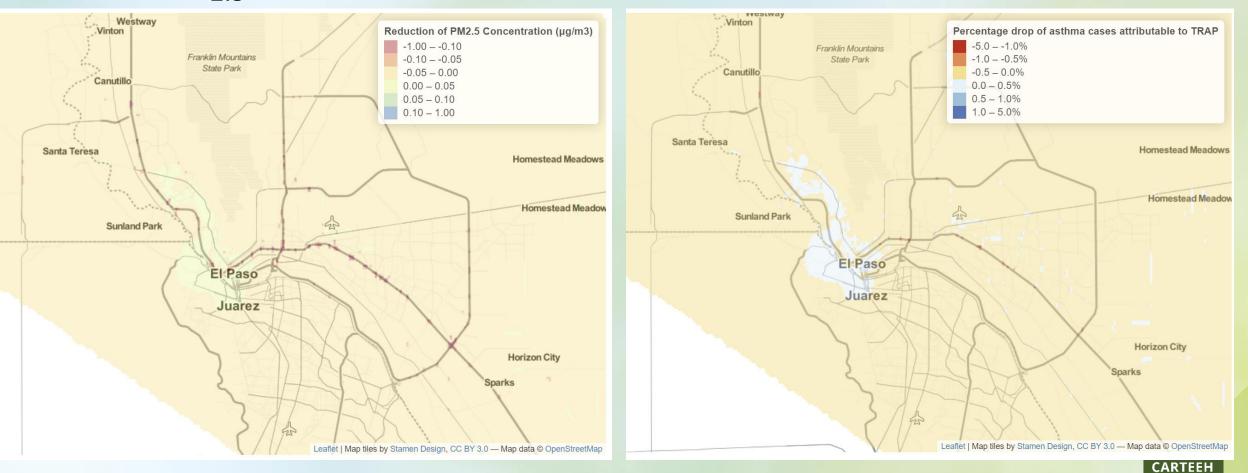
Local Impacts: Traffic

VMT



Delay

Local Impacts: Emission


GHG

Local Impacts: Pollutant Dispersion and Health

PM_{2.5} Dispersion

Asthma Cases

- Environmental impacts are measured in greenhouse and air pollutant emissions, and societal impacts are measured in public health outcomes attributable to traffic-related air pollution.
- No significant improvement is observed in regional congestion and emission.
- Localized emission, pollutant concentration, and respiratory disease benefits are observed.
- Micromobility is effective at the local level.

Research Implications and Future Work

- Growing shared-micromobility services do not necessarily improve regional congestion and emissions.
- However, emission benefits and health impacts can be observed where micromobility is implemented.
- Current land use in El Paso does not allow for regional implementation of micromobility; may have other emission and health implications in other regions.

Thank you!

Email: farinoushsharifi@tamu.edu

Team: Farinoush Sharifi Alex Meitiv Jeff Shelton Xiaodan Xu Yanzhi Ann Xu

