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INTRODUCTION &
BACKGROUND

Traffic congestion

Increased travel times

Pollution

Car accidents
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Network modeling

Tracks inflow and outflow of a “bathtub”/
“single reservoir”
Accumulation of vehicles n(z) is the only

variable Vickrey (1991, 2020)



» i(?)

= - - -

2 % Bathtub model for traveling trip dynamics \ l l
5 n(t)

S0

oy '

oY

=% 01 SUPPLY: 0(5[
=g

Network fundamental diagram: ¢

v(t) =V (p(®))

Assumption: Trapezoidal

DEMAND:
Distribution of trip distances: ®(t, x)




%

é o DEMAND TYPE

83

N X

O % 01 TRIP DISTANCE
|_

Z @ .+ The demand is defined x4

by trip distance and
departure time

 Could be known, or a

distribution

DEPARTURE
TIME



INTRODUCTION &
BACKGROUND

Vickrey’s bathtub model

Vickrey (1991, 2020)
« ASSUMPTION on Trip Distance

- time-independent negative exponential distribution

Dynamics modeled with ODE
Small and Chu (2003)

B k(t)V(k(t)) Daganzo (2007)

A(t) = i(f) — -

What if the trip distance follows another distribution?
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Generalized bathtub model

Jin (2020)
« Can handle any trip distance

« Completion rate: o(t) = V(k(t));—xY(t, 0)
« Dynamics (PDE)

%Y(t, x) = V(k(®)) % Y(t,x) = i(t) B(t,x)

Y (t, x): active traveling trips with remaining FHV distance not smaller than x
n(t) = Y (¢, 0) : total number of active traveling trips

k(t): density of vehicles in the network
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LIMITATIONS

Continuum modeling
* Deterministic demand

- Exact solution

» Probabilistic demand
- No information of higher order momentum

- Approximate solution
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same idea, but
more detail

« We have a bathtub

1 i(?)

e The demand is defined Trimming machine:

by individual trips
« The progression can be

tracked

Rate: V(1)

—
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CHRRAGTERISTIC DISTANGE

—— Characteristic trip distance
501 — z(ti)

« Define z(t)
« Characteristic distance of trip i 40
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1st GONTRIBUTION
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DEMAND TYPE
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2nd GONTRIBUTION

INDEPENDENT OF CITY SIZE
Model can be normalized
« 1 Mio agents in a city with 1000 km

« 1000 agents in a city of 1 km

If the demand “pattern” is equal.
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NUMERICAL RESULTS: speed evolution

Total demand: 320 veh/km/In ; trapezoidal inflow
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03 Constant trip distance

Figure 1: Speed evolution over time for two types of TDD with the same average trip length of B = 2 km.
The constant trip distance (blue), and the time-independent negative exponential trip distance distribution

13



RESULTS ANALYSIS

03

14

NUMERICAL RESULTS: individual trip information

Negative exponential
distribution:

Different samples lead to
different results (probabilistic)
Constant distance:

Few variation across

simulations (deterministic)
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CONTRIBUTIONS

1. Captures individual trip information

2. Computationally efficient

3. Can be normalized

4. More accurate than generalized bathtub model for

stochastic demand
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CONCLUSIONS

« Solution for any demand
« Efficient and accurate to model traffic congestion
« Can be extended to more complex systems with shared

mobility
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