

University of California, Irvine Institute of Transportation Studies Civil and Environmental Engineering Department

Efficient agent-based model of network trip flow with general demand pattern

Irene Martinez irenem3@uci.edu Prof. Wenlong Jin wjin@uci.edu

TRB Workshop on Traffic Simulation and CAV Modeling 18th November 2020

TABLE OF CONTENTS

INTRODUCTION & BACKGROUND

03 RESULTS ANALYSIS

Efficient agent-based model of network trip flow with general demand pattern

Irene Martinez

<u>irenem3@uci.edu</u>

Prof. Wenlong Jin wjin@uci.edu

TRB Workshop on Traffic Simulation and CAV Modeling 18th November 2020

University of California, Irvine Institute of Transportation Studies

- Increased travel times
- Pollution
- Car accidents

Network modeling

- Tracks inflow and outflow of a "bathtub"/ "single reservoir"
- Accumulation of vehicles *n*(*t*) is the only

variable

Vickrey (1991, 2020)

Bathtub model for traveling trip dynamics

C

0

SUPPLY:

Network fundamental diagram: $v(t) = V(\rho(t))$ Assumption: Trapezoidal

DEMAND: Distribution of trip distances: $\tilde{\Phi}(t, x)$

• The demand is defined

by trip distance and

departure time

Could be known, or a

distribution

Vickrey's bathtub model

Vickrey (1991, 2020)

- ASSUMPTION on Trip Distance
 - \rightarrow time-independent negative exponential distribution

Dynamics modeled with ODE

$$\dot{n}(t) = \dot{i}(t) - \frac{B k(t)V(k(t))}{\overline{L}}$$

Small and Chu (2003) Daganzo (2007)

What if the trip distance follows another distribution?

Generalized bathtub model

Jin (2020)

• Can handle any trip distance

• Completion rate:
$$o(t) = V(k(t))\frac{\partial}{\partial x}Y(t,0)$$

• Dynamics (PDE)

$$\frac{\partial}{\partial t}Y(t,x) - V(k(t))\frac{\partial}{\partial x}Y(t,x) = i(t)\,\tilde{\Phi}(t,x)$$

Y(t, x): active traveling trips with remaining FHV distance not smaller than xn(t) = Y(t, 0): total number of active traveling trips k(t): density of vehicles in the network

LIMITATIONS

Continuum modeling

- Deterministic demand
 - \rightarrow Exact solution

- Probabilistic demand
 - \rightarrow No information of higher order momentum
 - \rightarrow Approximate solution

- We have a bathtub
- The demand is defined

by individual trips

The progression can be

tracked

CHARACTERISTIC DISTANCE

- Define z(t)
- Characteristic distance of trip *i*

$$\theta_i = x_i + z(t_i)$$

CHARACTERISTIC TRIP DISTANCE

0.0

0.5

10

Departure time

1.5

2.0

METHODOLOGY

Efficiency

- Naïve: without sorting
- Proposed: with sorting

- Discrete
- Continuous
- Probabilistic

INDEPENDENT OF CITY SIZE

Model can be **<u>normalized</u>**

- 1 Mio agents in a city with 1000 km
- 1000 agents in a city of 1 km

If the demand "pattern" is equal.

NUMERICAL RESULTS: speed evolution

Total demand: 320 veh/km/ln ; trapezoidal inflow

Figure 1: Speed evolution over time for two types of TDD with the same average trip length of B = 2 km. The constant trip distance (blue), and the time-independent negative exponential trip distance distribution

NUMERICAL RESULTS: individual trip information

Negative exponential

distribution:

Different samples lead to

different results (probabilistic)

Constant distance:

Few variation across

simulations (deterministic)

MONTE CARLO SIMULATIONS

CONTRIBUTIONS

- 1. Captures individual trip information
- 2. Computationally efficient
- 3. Can be normalized
- 4. More accurate than generalized bathtub model for

stochastic demand

- Solution for any demand
- Efficient and accurate to model traffic congestion
- Can be extended to more complex systems with shared mobility

Does anyone have any questions?

University of California, Irvine Institute of Transportation Studies Civil and Environmental Engineering Department Irene Martinez, irenem3@uci.edu Prof. Wenlong Jin, wjin@uci.edu